viernes, 22 de enero de 2016



INTERNET Y EDUCACIÓN 
imagen

Es indudable el uso, cada vez mayor, de Internet en la sociedad actual. Es sin duda, la tecnología más moderna del siglo XX, al promover un intercambio de información constante e inmediata en todo el mundo. Este avance tecnológico ha generado una nueva visión de la sociedad porque se han eliminado las barreras de tiempo y espacio entre los hombres, y porque ahora la comunicación entre ellos es inmediata e instantánea. Internet no es más que una red de computadoras que contiene un grupo muy grande de recursos de información y que hoy cuenta con muchos millones de usuarios conectados a ella, esto es lo que se conoce como la autopista de la información. Los servicios más utilizados de Internet son el correo electrónico y de la Web, a pesar de que hoy en día existen muchas aplicaciones. Un aspecto importante de resaltar es que Internet es una red que no le pertenece a ninguna persona, organización, empresa o gobierno y, por tanto, es un patrimonio de la humanidad.

El uso de Internet en la Educación
Las tecnologías de la información y comunicación (TIC) han adquirido gran relevancia, principalmente a partir del amplio uso de la red Internet, siendo el educativo uno de sus más importantes campos de acción. Las TIC tienen como base la información y han hecho que el usuario pase de tener el papel de receptor pasivo de un mensaje, a tener un papel activo, donde él decide la secuencia de la información y establece el ritmo, calidad, cantidad y profundización de la información que desea. Esto es, realmente, un gran avance que debe ser aprovechado en el hecho institucional.


Fortalezas de Internet en la educación
En mi opinión, lo expresado por Thayer (2004), recoge de una manera sucinta las ventajas de la influencia que las TIC tienen en la educación. Sostiene este autor, que las TIC adquieren enormes implicaciones para todos los estudiantes de todas las disciplinas. Ponen el mundo al alcance de la mano y proporcionan un aprendizaje sin fronteras, sin límites. Además, Internet permite a los estudiantes trabajar en colaboración y de manera interactiva con otros estudiantes en aulas diseminadas por todo el mundo, contribuyendo así, a la integración de experiencias de aprendizaje y proporcionando un clima para descubrir y compartir nuevos conceptos e ideas, al mismo tiempo, que las aulas se convierten en centros de educación internacional.

Marqués Graells (2004), también menciona algunas ventajas del uso de las TIC en la educación. Ellas son: (a) es de alto interés y motivación para el estudiante,  la interacción promueve una actividad intelectual, desarrolla la iniciativa,  la re alimentación promueve el aprendizaje a partir de errores, hay mayor comunicación entre los profesores y los alumnos, es un aprendizaje cooperativo, hay alto grado de interdisciplinaridad, contribuye a la alfabetización informática, desarrolla habilidades de búsqueda y selección de la información, mejora las competencias de expresión y creatividad, permite el fácil acceso a mucha información y de todo tipo, y los programas informáticos permiten simular secuencias y fenómenos (físicos, químicos y sociales)que ayudan a comprenderlos mejor.

Conclusión
Finalmente, considero que el uso de las TIC en educación es algo muy importante que nos está llegando y que presenta tanta ventajas que hacen ineludible su incorporación al proceso educativo. Una prueba de ello es este curso sobre las TIC. Sin embargo, hay que estar conscientes que existen algunos inconvenientes que deben ser superados a la hora de su utilización para hacerlas más exitosas.







martes, 24 de noviembre de 2015

EL MATERIAL DE LABORATORIO


-EL MATERIAL DE LABORATORIO:
En esta parte del artículo lo que hago es mostrar el material más común en los laboratorios de química en distintas presentaciones: Material de vidrio, material de vidrio esmerilado, material de porcelana y material de química. Posteriormente hago una presentación en la que explico lo que es el material aforado, como se debe medir con el y cada tipo de material aforado. Finalmente hago una presentación para explicar para que sirve cada material de laboratorio citado en los apartados anteriores.









lunes, 23 de noviembre de 2015

Química ambiental

QUIMICA AMBIENTAL
La química ambiental, denominada también química medioambiental es la aplicación de la química al estudio de los problemas y la conservación del ambiente. Estudia los procesos químicos que tienen lugar en el medio ambiente global, o en alguna de sus partes: el suelo, los ríos y lagos, los océanos, la atmósfera, así como el impacto de las actividades humanas sobre nuestro entorno y la problemática que ello ocasiona.1 La química de la atmósfera, a medida que la comunidad internacional presta más atención a las tesis del ecologismo (con acuerdos internacionales como el protocolo de Kioto para reducir las emisiones de gases de efecto invernadero), es una disciplina que ha ido cobrando cada vez más importancia.
El desarrollo de esta disciplina mostró las graves consecuencias que tuvo para la capa de ozono el uso generalizado de los cloro-floro-carbonos. Tras las experiencias con la lluvia ácida, la combinación de química medioambiental e ingeniería química resultó en el desarrollo de los tratamientos para limitar las emisiones de las fábricas.
También la química medioambiental se ocupa de los procesos, reacciones, evolución e interacciones que tienen lugar en las masas de agua continentales y marinas por el vertido de contaminantesantropológicos. Asimismo, estudia los tratamientos de dichos vertidos para reducir su carga dañina.
También hay interacción entre la llamada Química sostenible o Química verde y la preservación del ambiente, pues aquella estudia optimizar los procesos productivos químicos, eliminando productos secundarios, empleando condiciones menos agresivas (de presión y temperatura, de tipo de disolvente).

La química ambiental se encarga de realizar la supervisor de los proyectos industriales, teniendo en cuenta el impacto ambiental.

Termoquimica


LA TERMOQUIMICA


-DEFINICIÓN DE TERMOQUÍMICA.-

Es la parte de la Química que se encarga del estudio del intercambio energético de un sistema químico con el exterior.
Hay sistemas químicos que evolucionan de reactivos a productos desprendiendo energía. Son las reacciones exotérmicas.
Otros sistemas químicos evolucionan de reactivos a productos precisando energía. Son las reacciones endotérmicas.
VARIABLES DE ESTADO
Son magnitudes que pueden variar a lo largo de un proceso (por ejemplo, en el transcurso de una reacción química)
Ejemplos:
·  Presión.
·  Temperatura.
·  Volumen.
·  Concentración.
FUNCIONES DE ESTADO
Son variables de estado que tienen un valor único para cada estado del sistema.
Su variación sólo depende del estado inicial y final y no del camino desarrollado.
Son funciones de estado: Presión, temperatura, energía interna, entalpía.
NO lo son: calor, trabajo.

PRIMER PRINCIPIO DE LA TERMODINÁMICA

ENERGÍA INTERNA (U): Es la energía total del sistema, suma de energías cinéticas de vibración, etc, de todas las moléculas.
· Es imposible medirla.
· En cambio, sí se puede medir su variación.

Espectros Atómicos


ESPECTROS ATÓMICOS

Cada átomo es capaz de emitir o absorber radiación electromagnética, aunque solamente en algunas frecuencias que son características propias de cada uno de los diferentes elementos químicos.

Si, mediante suministro de energía calorífica, se estimula un determinado elemento en su fase gaseosa, sus átomos emiten radiación en ciertas frecuencias del visible, que constituyen su espectro de emisión.

Si el mismo elemento, también en estado de gas, recibe radiación electromagnética, absorbe en ciertas frecuencias del visible, precisamente las mismas en las que emite cuando se estimula mediante calor. Este será su espectro de absorción.

Se cumple, así, la llamada Ley de Kirchoff, que nos indica que todo elemento absorbe radiación en las mismas longitudes de onda en las que la emite. Los espectros de absorción y de emisión resultan ser, pues, el negativo uno del otro.

Puesto que el espectro, tanto de emisión como de absorción, es característico de cada elemento, sirve para identificar cada uno de los elementos de la tabla periódica, por simple visualización y análisis de la posición de las líneas de absorción o emisión en su espectro.

Estas características se manifiestan ya se trate de un elemento puro o bien combinado con otros elementos, por lo que se obtiene un procedimiento bastante fiable de identificación.


Podemos, en definitiva, identificar la existencia de determinados elementos químicos en la composición de sistemas inaccesibles, como pueden ser objetos astronómicos, planetas, estrellas o sistemas estelares lejanos, aparte de que, también, y debido al Efecto Doppler-Fizeau, podemos establecer una componente de velocidad de acercamiento o alejamiento de nosotros.

Estructura del átomo


Estructura del átomo



En el átomo distinguimos dos partes: el núcleo y la corteza.
- El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, los neutrones. La masa de un protón es aproximadamente igual a la de un neutrón.
Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z.
- La corteza es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón.
Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones.

                        Isótopos
La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones.
Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico. 

La masa molar


La masa molar


La magnitud física que indica la cantidad de materia presente en un cuerpo recibe el nombre de masa.
La noción de masa molar refiere a la masa de un mol de una cierta sustancia, expresada en gramos. Un mol, por su parte, es la cantidad de sustancia que contiene tantas entidades elementales (átomos, moléculas, iones, etc.) de un tipo como átomos presentes en 12 gramos de carbono-12.

La cantidad de unidades elementales que indica un mol de sustancia, por lo tanto, es constante, ya que no depende del tipo de material o de partícula. A esa cantidad se la conoce como número de Avogadro. Esta constante permite que los químicos expresen el peso de los átomos. La ecuación indica que un mol equivale a 6,022 x 10 elevado a 23 partículas.

Para calcular la masa molar, hay que recurrir a la tabla periódica de elementos.

En química, el uso del mol está destinado a calcular el número de moléculas y átomos que hay en una sustancia determinada, dado que se trata de elementos de un tamaño extremadamente pequeño. En tan sólo una gota de agua hay tantas moléculas de H2O que la mayoría de la gente no sabría cómo expresar la cantidad, y es por eso que el concepto de mol resulta tan útil en estos casos, para evitar las magnitudes con millones, billones, trillones, etcétera.